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In displacing a viscous fluid from the gap between two closely spaced parallel plates, 
a thin film of the original fluid remains on the surface of each plate. Boundary 
conditions which connect the approximate equations in the region in front of the 
interface with the approximate solutions in the thin-film region are determined from 
local solutions of the equations in the vicinity of the interface edge. These interface 
conditions depend on both b/R (gap half-width/radius of curvature) and pUn/T, 
where p is the viscosity of the original fluid, Un is the normal velocity of the interface 
edge, and T is the interfacial tension. These conditions are determined using 
perturbation method when pU,,/T 4 1 and numerical methods when p U J T  is O( 1). 
Though previous theories have shown qualitative agreement with experiments, it  is 
hoped that these new boundary conditions improve the quantitative agreement. 

1. Introduction 
When a less viscous fluid drives a more viscous fluid out of a Hele-Shaw cell, 

consisting of two closely spaced parallel plates, the interface between the two fluids 
is unstable. It was observed in experiments by Saffman & Taylor (1958) that the 
unstable interface forms into fingers of the less viscous fluid penetrating into the more 
viscous 5uid. The shape of the interface between the two fluids depends on the 
capillary number, Ca = p U / T ,  where p is the viscosity of the 5uid that initially fills 
the Hele-Shaw cell, T is the surface tension, and U is a velocity characteristic of the 
moving interface. It also depends on the ratio of the distance between the two plates 
2b to the.width of the Hele-Shaw cell 2a, where 6 = b/a 4 1 (see figures 1 and 2). A 
third parameter, the ratio of the two viscosities, also effects the shape of the interface. 
For simplicity, we assume that the viscosity of the driving fluid can be neglected in 
comparison with the viscosity of the fluid that initially fills the gap between the 
plates. Using the methods discussed below, the results could be extended to include 
this third parameter. We also assume that the shape of the interface is symmetric 
about the mid-plane where z = 0, but not necessarily symmetric about the plane 
where y = 0. 

For a Hele-Shaw cell of a given size, 6 is fixed and the developing flow only depends 
on the capillary number. If Ca is not too large, it  was observed by Saffman & Taylor 
(1985), Pitts (1980), Park & Homsy (1985), Tebeling, Zocchi & Libchaber (1987) 
and others that the flow develops into a single steady-state finger which moves 
through the cell with constant velocity U. For larger values of the capillary number, 
the interface branches intQ a number of different fingers and continues to evolve in 
time. The precise value of Ca at which there is a transition from a single steady-state 
finger to the more complicated pattern is unknown. Though figures 1 and 2 are drawn 
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FIQURE 2. Side view of Hele-Shaw cell. 

to represent the steady-state case, the boundary conditions developed below are also 
valid for the non-steady problem. 

The main concern of investigators that have examined the above displacement 
problem is the shape of the leading edge of the interface, located in the mid-plane. 
Throughout this paper, the term lateral will refer to variations along this interface 
edge, while the term transverse will refer to variations in the plane perpendicular to 
the interface edge (see figure 2). The purpose of this paper is to determine approximate 
boundary conditions that take into account the flow in the transverse direction and 
its effect on the shape of the interface edge. 

The solution of the complete three-dimensional Hele-Shaw displacement problem 
requires finding the shape of the interface and solving for the velocity u = (u,v,w) 
and pressure p in a domain bounded by the interface, the parallel plates at z = f b, 
and the sides of the cell at y = & a. The conservation equatioi? and Stokes equation are 

v * u  = 0, (1) 

v p  = p u .  (2) 

The boundary condition u = 0 is applied on y = +a and z = fb. The interface 
conditions are 

(u- U ) - n  = 0, ( 3 4  

teaan = 0, ( 3 b )  

where U is the velocity of the interface, a is the stress tensor, and n and t represent 
the unit normal and unit tangent vectors to the interface. The principal radii of 
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curvature of the interface are R, and R,, the interfacial tension is T, and the constant 
pressure of the displacing fluid is pa. 

Since it is difficult to calculate the solution of the full three-dimensional problem, 
we divide the domain into three regions (see figures 1 and 2 )  and make approximations 
in each region based on E = b/a + 1. In Region I, away from the interface edge, the 
z- and y-variables are scaled by the length a and the z-variable by the length b. 
For 8 Q 1 ,  the velocity components are given by 

where the pressure p ,  to this approximation, is a function only of z and y. By 
averaging the velocity field across the gap between the plates, we get the well-known 
two-dimensional equations for the components of the mean velocity in the plane 
parallel to the plates (Lamb 1932), 

where b is the gap half-width. 
In  Region 111, where there is a thin film of viscous fluid on the surface of each plate, 

z and y are scaled by a, and z is scaled by b. These are the same lengthscales as used 
in Region I. To this approximation, the velocity solution in the thin film is u = 0, 
the pressure isp,, and the shape of the interface is determined from the limiting values 
of the thickness mb (see figure 2 ) .  These values come from the outer limits of the 
solution in Region 11. In the displacing fluid, the velocity close to Region I1 equals 
U, the velocity of the interface edge. By averaging the velocity in the z-direction, 
we find that the mean velocity is (1 - m) U. 

To complete the two-dimensional problem, two boundary conditions are needed 
to connect the solutions of Regions I and 111. There is the kinematic condition given 

( 6 4  u-n = ( l - m )  (Uvn), 

where n is the normal to the interface edge and ii = (Z, Z). There is also the dynamic 
condition relating the limits of the pressure on the two sides, 

- 
by 

P-Po = AP. (6b) 

The limiting values m and A p  are to be understood as outer limits in which the 
distance from the interface edge is small compared with a,  but large compared with 
b. These values are determined from solutions of the appropriate equations in 
Region 11. It should be noted that the width of Region I1 is O(b) ; thus, the size of 
the region that is being replaced by boundary conditions (6a, b) is very small in 
comparison with the other two regions. For E 4 1, we expect the limiting values of 
m and A p  to have the form 

and 

where U, = U-n and R is the radius of curvature of the interface edge. Since we are 
assuming that R is O(a), the term b / R  is O(E) .  Once m and A p  are known, the shape 
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of the interface edge and the components of mean velocity can be found by solving 
(5u, b)  with interface conditions (6a, b). 

In  the past, since the dependence of m and Ap on the capillary number was not 
known, the four functions mo, ml, K O ,  and d were assumed to be constant. Saffman 
& Taylor (1958) were able to find a closed-form solution, but were unable to determine 
the finger width A (see figure 1) for the case in which both m1 and K~ were equal to 
zero. For the case d = - 1, McLean & Saffman (1981) and Vanden-Broeck (1983) 
calculated interface-edge profiles and widths A for different values of the capillary 
number. The numerical and experimental finger profiles were in close agreement for 
fingers with the same width A, but there was significant disagreement between the 
numerical and experimental results for the same value of the capillary number. In 
the hope of improving the agreement, the dependence of m and Ap on the capillary 
number is determined here. 

This is accomplished by solving the appropriate equations in the transverse 
direction. At any point along the interface edge, the shape of the interface in the plane 
perpendicular to the interface edge depends only on the lateral curvature (b/R) and 
normal velocity (,uUn/T) at that point. Once these solutions are determined for 
different values of b/R and pUn/T ,  the functions m and Ap can be found. In  fact, 
given a moving interface edge of arbitrary shape, these solutions can be used to 
determine the entire shape of the interface in Region 11. 

Since the solution in the plane perpendicular to the interface edge depends only 
on b/R and ,uUn/T, we examine the simpler problem in which the interface edge is 
an expanding circle of radius R. This axisymmetric problem is solved in two ways. 
First, using singular perturbation methods and matched asymptotic expansions, the 
four functions in (7 a, b) are determined for small values of the capillary number Ca. 
These results are closely related to the work of Bretherton (1961), which solved the 
problem in which the interface edge is straight (b/R = 0), and the more recent work 
of Park & Homsy (1984), which considered the problem in which small lateral 
variations from a straight interface edge are allowed. Unfortunately, in all three 
problems, m and Ap can only be determined up to O(Cd). This means that the 
expansions are only valid for very small values of the capillary number. Appropriate 
equations for the O(Cu)-terms can be found, but these partial differential equations 
would have to be solved numerically. 

Secondly, the entire axisymmetric problem is solved numerically for different 
values of b/R and Ca. This is done by beginning with an approximate shape of the 
interface, covering the resulting domain with a composite mesh, and using finite- 
difference methods to find the solution. The correct interface is then determined using 
an iteration method. By combining the perturbation solution, valid for small values 
of Cu, with the numerical solution, the functions m and Ap are determined. 

In $5, the appropriate equations in RegionIIare derived directly from the 
three-dimensional Hele-Shaw equations (l), (2) and (3). This is done by introducing 
an orthogonal curvilinear coordinate system in Region I1 based on the arbitrary 
shape of the interface edge and by introducing dimensionless variables which take 
into account the different lengthscales. The resulting equations verify the correctness 
of the assumed form of m and Ap in (7a, b )  and the axisymmetric equations discussed 
above. 
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2. Formulation of the axisymmetric problem 
We consider the problem in which the driving fluid is injected at  the origin of the 

coordinate system described in $1. We assume that the interface edge expands 
circularly (no lateral variations) with velocity U and that the radius R of the interface 
edge is much larger than the gap half-width b. Our main interest concerns the 
interface shape and the pressure for different values of the capillary number 
Ca = p U / T  and lateral curvature 6 = b/R 4 1 .  

The axisymmetric conservation equation and Stokes equations for the viscous fluid 
are ii 

r iif+-r;+Gi = 0, ( 8 4  

where the tilde denotes the physical variables and p is the viscosity. We introduce 
dimensionless variables and a local reference frame centred at  the edge of the interface 
by the following change of variables: 

Here, Po is the constant pressure of the driving fluid and T is the interfacial tension. 
The scaling for the pressure comes from balancing the pressure and curvature terms 
in the normal-stress boundary condition (12c)  given below. The function z = h(r) 
gives the shape of the interface in the (r, +plane. The dimensionless equations for 
(8a, b, c )  are 

where 

6 
1 +6r ur+-(U+l)+W, = 0,  

6 
vaw = wrr+l+Grwr+w,,. 

The boundary conditions on the plates z = & 1 are 

u = - 1 ,  w = 0. ( l l a ,  b )  

Since the interface is symmetric about the mid-plane, it is sufficient to determine the 
solution for z 2 0. The interface conditions to be satisfied on z = h(r) 2 0 are 

hru-w = 0, (12a) 

(12b)  ( 1  - h:) (u, + wr) - 2hr(ur- w,) = 0, 
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where the terms on the right-hand side of (12c) are the principal curvatures multiplied 
by a negative sign. These equations must now be solved for different values of the 
parameters Cu and 6. 

In  the more general displacement problem, we also introduce a coordinate r in 
Region I1 that is normal to the interface edge and scaled by the lengthscale b (see 
95). In both problems, values of the scaled variable r that are O(1) correspond to 
values of the physical variable that are a distance O(b) away from the interface edge. 
This means that when E 4 1 the outer limits of the solution in Region 11, which match 
onto the solutions in Regions I and 111, correspond to the limits r+ a0 and r - t -  co. 
This also means that the boundary conditions at the sides of the cell do not enter 
into the equations that must be solved in Region 11. 

The thickness rn and pressure jump Ap in boundary conditions (6u, b) are 
determined from solutions of the axisymmetric problem by examining these limits. 
As r - t -  co, the interface approaches a constant value (h,+O); thus, the thickness 
of the thin-film region is 

rn(Cu, 6) = lim [l -h(r ;  Cu, a)], 
r+- a0 

where we have indicated that the shape of the interface depends on both parameters. 
The limiting value of the velocity components and pressure are 

u-t-1, w-to ,  p + o .  (14a, b ,  c) 

These asymptotic results are used in the numerical solution of the problem. 
As r+ 00, the solution components are 

and the pressure is 

1-22 

1+6r’ 
u+- 1 +$I?- w-to, 

The constant B is related to the flow as r+-  co and is defined in $4. The constant 
K is determined when the axisymmetric problem is solved numerically. In  the 
Hele-Shaw displacement problem, we replace Region I1 by an appropriate pressure- 
jump condition at the interface edge ( r = O ) .  This value is determined by the 
difference of the two asymptotic results (14c), (15c) evaluated at r = 0 and is equal 
t0 K ( C U ,  8).  

3. Perturbation solution 

$2, we assume that both parameters are small; 
To determine the perturbation solution of the axisymmetric problem discussed in 

Bretherton (1961) solved this problem for the case 6 = 0, which is equivalent to a 
straight interface in the lateral direction. Park & Homsy (1984) made significant 
progress in the case S 4 1 by considering the problem in which small lateral variations 
along a straight interface edge are allowed. In the axisymmetric problem, there are 
no lateral variations along the interface and the radius of curvature of the interface 
edge is equal to R. Though the equations and solutions in the Park & Homsy problem 
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and the axisymmetric problem are similar, there are some differences which can best 
be illustrated by examining the more general perturbation problem in which the 
interface edge has an arbitrary shape (see $6) .  

It is known from the work of Bretherton that this type of problem is a singular 
perturbation problem in the capillary number Cu and that the expansion involves 
powers of Cd. The axisymmetric problem is a regular perturbation problem in 6 and 
can be expanded in powers of 6. The perturbation solution is composed of an outer 
expansion, valid away from the thin-film region, and an inner expansion, valid near 
the thin-film region. These two expansions are matched in an overlap region using 
the techniques of matched asymptotic expansions. 

In  the outer region, away from the thin-film region, ( l o ) ,  ( 1 1 )  and (12) are valid. 
We expand the pressure and shape of the interface in the outer region by setting 

p = p ~ + 6 p ' + c d p 2 + 6 c u ~ p s +  ... (16a)  

h = ho + 6h' + Cdh2 + 6Cdh3 + . . . . (16b) and 

From the work of Bretherton, it is known that the Ca! term is not necessary in the 
outer expansion. If we include these terms, we find that they are equal to zero when 
the matching is completed. For simplicity, these terms have not been included in the 
expansion. 

When the pressure expansion (16u) is substituted into ( lob ,  c ) ,  we discover that 
all four terms in (16u) are constant and that the velocity does not enter into the 
problem until we reach pressure terms of O(Cu). From (12c) ,  the four terms in the 
expansion of h given in (16b) must satisfy 

Terms in (12c) of O(Ca) and O ( P )  do not enter into the problem at this order and 
have been dropped. To find the appropriate second-order ordinary differential 
equation for each term in the expansion of h, we substitute both expansions (16a, b )  
into (17) ,  expand the right-hand side in powers of Cai and 6, and match like powers 
on each side of the equation. The constants of integration are chosen such that hr 
is integrable as r+O and h(0) = 0. 

The leading-order equation to solve is 

When the capillary number is zero, the thickness of the thin film is zero and the gap 
is completely filled by the displacing fluid. We assume that the interface approaches 
the upper plate tangentially at some point r = 1 = lo + 61' + . . ., z = 1 (i.e. the contact 
angle is zero). Under these conditions, the solution of (18) is a semicircle with radius 
equal to 1 ,  

ho = [ l -  ( r +  l)'? (19) 

with po = - 1 ,  10 = - 1 .  (20a, b) 
The O(6)-equation is 

hir 3h: hR h: h: 
( 1  + h:2)t- ( 1  + h:2) !+ (1 + h:z)i ' 

p' = 

which has the solution 
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To determine p' and El, we evaluate h and h, at r = E, 

hO(E)+Sh'(E) = l+S(pl+@)+O(Sa), 

h;(E)+Sh:(E) = S(-E'-p'-+)+O(Se). 

Since the interface intersects the plate tangentially at r = I ,  we get 

pl = -@, I' = ln-1 4 a *  (24% a )  
This value of p 1  was first determined by Park t Homsy (1984). 

O(Cu4)-equation given by 
To determine the dependence of the solution on the capillary number, we solve the 

Par 
ha = ---* 

Its solution is 

Finally, the O(SCd)-equation is 

pa = 
h:, - 3h;,(h; h: + h: h;) - 3h;(h: h;,. + h; h:,.) 

(1 + h;a)i (1 + h;a)i (1 + h;a$ 

and the solution is 

(28) 

The values of p a  and p3  are determined in the matching process. 
We now examine the transition or inner region which connects the solution in the 

outer region with the thin film of constant thickness. The transition region is centred 
at  the point r = I and z = 1 where the interface determined in the outer expansion 
meets the upper plate. We introduce local variables at this point by the following 
change of variables : 

- - w  
u = u ,  w = c & f ,  $ = p .  

These scalings give the lubrication approximation in the transition region. The 
appropriate transition equations are found by substituting the local variables (29) 
into (lo), (1 1) and (12). The velocity and pressure field can be explicitly determined 
in terms of the interface shape. The leading-order shape of the interface satisfies the 
ordinary differential equation 

where E+-E as ?;+--oo and m = Cahi is the constant thickness of the thin-film 
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region. See Bretherton (1961) for the derivation of this equation. The above equation 
is integrated numerically, beginning with the asymptotic solution as T+- 00, 

A N  - i j j i --  mexp E-  - ( r+ro)  - 1  +..., 
in order to determine the constants a, 5, and 3 in the asymptotic solution as T+ 00 , 

(32 1 
a -  - - 

h - =-(r+ro)2+6(P+T,)+rn+ ... . 

The values of these constants are 
- 
a = -0.6687, 8 = -0.014, 3 = -2.84. 

The unknown constants i j j i  and To are scaled out of the equation before the integration 
is done. To facilitate matching with the outer expansion, we rewrite (32) in terms 
of outer variables by using (29) : 

where the translation constant r, was chosen to eliminate the O(Cd)-term which 
cannot be matched in the outer expansion, 

It is important to  note that the leading-order equations in the transition region, 
found by setting Ca = 0, are independent of 6. This means that Bretherton's result 
is also valid for non-zero 6 and the unknown constant i j j i  can depend on 6. By 
substituting 

- 
m = !S'+s?iz'+ ..., I = lo+6Z1+ ... = -1+6(@-#+... 

into (33) and expanding in powers of 6, we get the following expression for h: 

... . (34)  

The constants Eo and are determined by matching the asymptotic solution in the 
transition region as T+m given in (34) with the asymptotic solution in the outer 
region as r+-  1. 

The shape of the interface in the outer region is h - ho + 6h1 + Cdha + 6Cdhs + . . . 
where the four terms are given in (19), (22), (26) and (28). These terms are expanded 
in powers of r+  1, which gives 

h - [l - t ( r+  1)*+.  ..I +a[(@ -4) ( r+  l)-*(r+ 1 ) 2 +  ...I 
+Cdk'+. ..]+6Cd ks+p'p2 + ($-+)pa + ...I + .. . . (36) 

Matching the O(1)- and O(6)-terms in (34) and (35) determines S' and ijjil : 

7 2  = -2Z = 1.3375, El =  IF&'. 
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Matching the next two terms determines p 2  and p 3  : 

p 2  = -3.80, p3  = 4.07. 

Therefore, the perturbation solutions for the film thickness and pressure jump (7a, b) 
discussed in $1 are 

(364  

(36b)  

b 
m = (1.3375Cd + , . .) + ( - 1.33747~CaS' + . . .) R -+ . . . , 

b 
R 

K = ( - 1 - 3.80cd+ . . .) + ( -in + 4.07cat + . . .) -+ . . , . and 

The next term in each of the quantities in parentheses is O(Ca), so these expressions 
will only be valid for very small values of the capillary number. To determine 
higher-order terms in the expansion requires calculating both the velocity and 
pressure in the outer region. The resulting sets of partial differential equations could 
be solved numerically, but it makes more sense to numerically solve the original 
axisymmetric problem (lo)-( 12) for a larger range of capillary numbers instead. 

4. Numerical solution 
To solve (lo)-( 12) numerically, we introduce the stream function $ given by 

and the vorticity o given by w = wr-uz. 

The new versions of (lOa, b, c) are 

6 
Prr+Pzz+1+srPr = 0. 

The pressure equation is solved independently of the other two equations. 
If we substitute (37a, b) into the first interface condition ( 1 2 ~ ) )  we get 

$.,+h,II/, = (1+8r)hr. 

This expression can be integrated to give $ on the interface: 

I# = h+8Ior rhrdr. 

The second interface condition (12 b) can be rewritten as 

using (37a, b, c) and derivatives of (39a). The third interface condition ( 1 2 ~ ) )  

(394  
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is written in terms of $ by replacing the velocity terms in brackets with appropriate 
derivatives of (37a, b). 

Since we are assuming that the interface is symmeric about the mid-plane, the 
boundary conditions on z = 0 are 

$ = O ,  w = o .  (40% b )  

$ = B ,  $z=o ,  (41 a,  b )  

On the top plate z = 1, we have 

where the value of the constant B is determined by letting r+-00 in the integral 
given in (39a). The derivative h, decays exponentially as r - f -  00 ; thus, we get an 
accurate value for B by integrating to some appropriate finite value r,,,. 

The asymptotic solutions for $ and w as r+f 00 are 

$+B,  w+O asr+-m (42% b )  

and asr+oo. 

Equations (38)-(41) are solved numerically on a finite domain by applying these 
asymptotic solutions at the finite values rmin and r,,.,,,. We choose the size of the 
domain to be large enough such that the thickness m and pressure jump K would not 
change if the domain were even larger. Typical values are r,,, = - 3.0 and rmax = 2.0. 

To determine the numerical solution for given values of Cu and S, we begin with 
an approximate shape for the interface profile. If the value of Cu is very small, we 
can use the perturbation solution; otherwise, we increase the value of Ca in 
increments using the interface shape calculated at the previous value. Since the shape 
of the interface is fixed, it is necessary to drop one of the interface conditions 
(39a, b, c ) .  Either the normal-velocity condition (39a) or normal-stress condition 
(39c) is usually dropped. In  order to calculate the pressure and velocity fields 
separately, we eliminate condition (39c). The remaining equations are then solved 
on a domain bounded by the approximate shape of the interface, the plate z = 1 and 
the mid-plane. This domain is covered by a composite mesh composed of a curvilinear 
grid which follows the curved interface, and a rectilinear grid parallel to the mid-plane 
and parallel plates. A typical curvilinear grid has 50 points along the interface and 
7 points perpendicular to the interface. A typical rectilinear grid has 45 points in the 
%-direction and 35 points in the y-direction. The curvilinear grid is constructed using 
cubic-spline interpolation. This method of grid generation can be easily applied to 
problems with very complex domains. It is also flexible enough to allow for stretching 
in the grids so that the number of grid points is greatest in regions where they are 
needed most. Numerical codes are being developed by other researchers that will 
automatically generate the different grids for a region of arbitrary shape. Interpola- 
tion equations are used to connect the solutions on the overlapping grids. 

After the velocity field has been determined using finite-difference methods, we 
solve (38c) on the same composite mesh to determine the pressure. The resulting 
solutions are substituted into the normal-stress condition (39c). The shape of the 
interface is then altered, and the procedure is repeated until this last interface 
condition is satisfied within a given tolerance. In  practice, i t  takes about three or four 
iterations. For complete details of the numerical procedure discussed above, see 
Reinelt BE Saffman (1985). 

For each value of the capillary number shown in figures 3 and 4,  ranging from 
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FIGURE 4. Coefficients for the pressure jump Ap versus the capillary number. -0-, numerical 
result for KO;  -*- , perturbation result for K O ;  -4-, numerical result for K' ;  ---- , perturbation 
result for d. 

Ca = 0.01 to 1.0, the solution is first calculated for 6 = 0. From these solutions, the 
functions m0 and KO are determined. Next, we set 6 = 0.01 and recalculate the solution 
for each value of the capillary number. The functions m1 and K~ in (7a, b) are then 
found using both the 6 = 0 and 6 = 0.01 solutions. Finally, we calculate the solutions 
at the value 6 = 0.02 (and in a number of cases additional values), in order to verify 
that both m1 and d are sufficiently accurate. An alternative approach involves 
linearizing in 6 and solving the resulting set of partial differential equations. This 
requires making a number of substantial changes in the numerical code, primarily 

FIGURE 3. Coefficients for the thickness of the thin film m versus the capillary number. -0-, 
numerical result formo; -*- , perturbation result for m0 ; -m-, numerical result for m1 ; ----, 
perturbation result for ml. 
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due to the interface conditions which must be evaluated on the perturbed interface 
and then expanded in Taylor series about the unperturbed interface. The first 
approach was adopted because it was much simpler to implement. 

It is clear from figures 3 and 4 that the perturbation solutions (36a, b) are only 
valid for very small values of the capillary number. This is to be expected because 
the next term in each of the expansions is O(Ca); thus, the relative error in each 
expression is O(Cai). This means that even if Ca is as small as 1 x the relative 
error is O( 10 % ) and, depending on the constants, could easily be in the neighbourhood 
of 3040  yo. All of the differences between the numerical and perturbation results in 
figures 3 and 4 are within these error estimates. (The numerical methods discussed 
above have also been applied to an axisymmetric finger propagating in a capillary 
tube of circular cross-section by Reinelt & Saffman (1985). Here, the numerical results 
were in excellent agreement with the experimental results of Taylor (1961) for 
different values of the capillary number.) 

5. Derivation of the Region 11 equations 
In Region I, away from the interface edge, the x- and y-variables were scaled by 

a, and the z-variable was scaled by b. In  Region 11, near the interface edge, these 
scalings are no longer valid. In  this region, we replace the x- and y-coordinates by 
a coordinate r which varies in the direction perpendicular to the interface edge, and 
a coordinate s which varies in the direction tangential to the interface edge (see 
figures 1 and 2 ) .  The appropriate lengthscale in both the perpendicular direction and 
the z-direction is now b, while the lengthscale in the tangential direction is a. The 
equations for Region I1 are determined by transforming the general Hele-Shaw 
displacement equations (1)-(3) into the new r,  s, and z orthogonal curvilinear 
coordinate system. To determine the relative importance of each term in the 
equations, we introduce dimensionless variables that take into account the different 
lengthscales. 

The curvilinear coordinate system discussed above is based on the shape of the 
interface edge and moves with the interface. Let the shape of the interface edge 
(r,  z = 0) be given by 

5 = aw, 0, Y = a m ,  t ) ,  (44) 

where 2 and 9 are dimensionless functions and 8 is a dimensionless arclength variable 
satisfying 

2:+g  = 1 .  

The curvature of the interface edge l? is an important parameter in Region 11. It is 
related to 2 and 9 by 

where R = ag .  The transformation between the two coordinate systems is 

x = a$+be8, y = a9-bd8, z = b2, (46) 
where the lengthscales were introduced to make the variables on the right-hand side 
dimensionleas. The coordinate r varies in the direction (Q8, -it8, 0), the normal to the 
interface edge. The tangent to the interface edge is g8, 0). From the transformation 
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equations (46), distance in physical variables is related to distance in the new 
coordinate system through the expression 

dx2 + dy2 + dz2 = az[s2 dr2 + (1 + srC^)2 ds2 + s2 dS2]. (47) 

The coefficients of the differentials on the right-hand side are used in the derivation 
of the transformed Hele-Shaw equations. For convenience, the hat is dropped from 
2 in the rest of this section. 

The dimensionless velocities 'li, 8 and 8 in the r-, s- and z-directions respectively are 

and the dimensionless pressure is 

jj=- P - P o  
T/b ' 

where U,(s,  t )  is the normal velocity of the interface edge and = b/a 4 1. It is 
important to note that the normal velocity ti is O( U,), but that the tangential velocity 
8 is only O(sU,).  The correct scaling for the tangentia,l velocity can be determined 
by balancing the derivative of $ with respect to s in Stokes equation (51 b) with the 
most important term on the right-hand side. It can also be determined by rewriting 
(5a, b) of Region I in terms of the new coordinate system so that they become 

In the transformed equations, derivatives with respect to s are multiplied by the 
factor s/(1 + e r e )  when compared with derivatives with respect to either r or z (see 
(47)). This means that the tangential velocity must be scaled by eU, in order to get 
the appropriate balance given in (49 b). 

To find the appropriate equations to solve in Region 11, we rewrite the Hele-Shaw 
displacement equations (1)-(3) in terms of our new coordinate system. This was 
accomplished using appendix 2 in Batchelor (1967). The new conservation equation 
which replaces (1) is 

€2 
(d+ l)+-88s+8, = 0. 

€C 
d r + G a  1 +sr 

Notice that the tangential velocity is not important in the conservation equation 
until we reach terms of O(e2). The components of Stokes equation (2) in the new 
coordinate system are 

1 € 2 0 2  a + m d s + m  2€G "' (d+l)], (51b) G a  
$, = Ca[V22ir], (51 c) 

where 

The capillary number in the above equations is based on the normal velocity of the 
interface edge, Ca = pU, /T .  Interface conditions (3a, b, c) can also be transformed 
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into the new coordinate system using (46) and (48), where the shape of the interface 
is z = h(r, 8 ) .  These conditions involve many terms and are not written out here. 

Since we are only interested in the solution in Region I1 up to O(a), we drop all 
O(a2)-terms and other higher-order terms. The new simpler versions of (50) and (51) 
are 

4,+aO(a+ 1)+&,  = 0, (52) 

p ,  = CU[d,, + €@a, + 4,J, (534  

p ,  = Cu(1 + a d )  [~rr+a@~,+~, ,+2a@4,+€@,(4+ l)], (53b) 

fl, = CU[&,, + a@&,+&*,]. (534 

The 4- and &-equations (52), (53a) and (53 c) and the appropriate interface conditions, 
valid to O(E), are independent of the tangential velocity 8. These equations can now 
be solved in the ( r ,  2)-plane for different values of Ca and @. The unknown shape of 
the interface edge on1 enters into these equations through the normal velocity U, 

0(6)-equations for the axisymmetric problem (lo), (1 1) and (12) discussed in $2, where 
and the curvature 8 These O(e)-equations for 4 and zir are identical to the 

In fact, since the axisymmetric problem is a special case of the general problem, even 
the higher-order terms in the axisymmetric problem appear in (50) and (51). Since 
the above O(el?)-problem and the O(b/R)-axisymmetric problem are identical, the 
film thickness and pressure jump calculated for the axisymmetric problem are also 
valid for an interface edge of arbitrary shape. 

6. Conclusions 
In  $3, we determined the perturbation solution of the axisymmetric problem for 

small values of Ca and 6 = b/R. In that problem, we assumed that the shape of the 
interface edge was a circle of radius R. Now, we briefly examine the perturbation 
solution for the more general problem (see $ 5 )  in which the interface edge has an 
arbitrary shape. The same expansions will still work, except that 6 = b/R is replaced 
by €0. Expansion (16a) is given by 

fl = flo+el?fll+Ca~fl2+e@Cu~fl9+ ..., (54) 

where @ depends on 8 .  If we substitute this expression into (52) and (53), we get the 
same results as before, except for the additional condition 

fl, = 0, (55) 

which follows from (53b). This extra condition requires that @be equal to a constant. 
To allow for a non-constant lateral curvature, it  is necessary to further expand in 
powers of Cd. Even in this case, all the terms will be constant until we reach the 
O(Cu)-term, at which time the velocity on the right-hand side of (53b) enters into 
the problem. This implies that lateral variations from an interface edge of constant 
radius R are O(Cu) and not allowed until we reach these terms. It also implies that 
the perturbation solution in $3 gives the leading-order terms in the expansion even 
in the case in which the interface edge has an arbitrary shape. 

The numerical results have led to boundary conditions that are valid for a much 
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larger range of the capillary number. These boundary conditions, which are functions 
of the curvature b /R  and the normal velocity U,, are valid as long as the radius of 
curvature R in the lateral direction is O(a). If the shape of the interface edge has 
lateral variations of O(b),  as in the experiments of Nittman, Daccord & Stanley 
(1985), then both lateral and transverse variations of the interface are the same order 
and the approximations are no longer valid. In  this case, it would be necessary to 
solve the complete three-dimensional problem in Region 11. 

The two new boundary conditions (6a, b), which take into account the flow in the 
transverse direction, are combined with the approximate equations in Region I 
(5a, b) to complete the two-dimensional problem. This problem can now be solved 
to determine the shape of the interface in the lateral direction. In previous studies, 
there was significant disagreement between the numerical and experimental interface- 
edge profiles for a given value of the capillary number. A stability analysis showed 
that the single steady-state fingers were unstable for all values of the capillary 
number. In experiments, it  has been observed that the fingers are stable if the 
capillary number is not too large. It is hoped that interface-edge profiles and finger 
stability calculated with the new boundary conditions will be in closer agreement with 
experiments. 
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